
Algorithm Engineering

Jens K. Mueller
jkm@informatik.uni-jena.de

Department of Mathematics and Computer Science
Friedrich Schiller University Jena

Monday 2nd February, 2015

mailto:jkm@informatik.uni-jena.de


Theoretical Limits



Theoretical and Effective Performance

I Theoretical Performance
I Number of nodes: 1
I Number of CPUs: 1
I Number of Cores: 1
I CPU frequency: 2.66 GHz
I Number of operations per cycle: 4 FLOP/cycle (single

precision)

Theoretical (peak) performance

2.66GHz · 4 FLOP/cycle ≈ 10.6GFLOP/s

I Effective performance determines the number of
operations per time

WS 2014 – Algorithm Engineering 3 / 10



Theoretical and Effective Bandwidth

I Theoretical bandwidth
I Memory clock: 1066 MHz
I Type of memory: DDR2 (double data rate)
I Number of channels: 2
I Memory bus: 64 bit

1066MHz · 2 · 2 · 64 bit/8 = 34 112MB/s ≈ 34.1GB/s
I Effective bandwidth

(Br + Bw)/t,

where Br is the number of bytes read, Bw number of
bytes written and t the spent time.

WS 2014 – Algorithm Engineering 4 / 10



System Information

I CPU
$ lshw -C cpu

I Memory
$ lshw -short -C memory

WS 2014 – Algorithm Engineering 5 / 10



IO bound vs Compute bound

I Average #operations per in-/output

number of operations
size of in- and output

I Number of operations needed to avoid CPU stalls (due to
memory accesses)

WS 2014 – Algorithm Engineering 6 / 10



Amdahl’s Law
Fraction x of program optimized by a factor s, then

Ts = (1 − x)︸ ︷︷ ︸
unoptimized

+
x
s︸︷︷︸

optimized

Assume T = 1 (unoptimized program’s running time), then
overall speedup is

T
Ts

=
1

(1 − x) + x
s

I x = 1 yields overall speed up of s
I Strong scaling

Overall speed up for fixed input size

WS 2014 – Algorithm Engineering 7(1) / 10



Amdahl’s Law (cont.)

1

2

3

4

5

6

7

8

9

10

1 4 16 64 256 1024 4096 16384

ov
er
al
ls
pe
ed
up

s

x = 0.9
x = 0.8
x = 0.7
x = 0.6
x = 0.5

WS 2014 – Algorithm Engineering 8(2) / 10



Gustafson’s Law
Embarrassingly parallel fraction x of program, then

T = (1 − x) + p · x

Parallel running time is

Tp = (1 − x) + x = 1

Hence, speed up is

T
Tp

= (1 − x) + p · x = 1+ (p − 1) · x

I Parallel part grows linear with the number of processors
I Input sizes increase
I Weak scaling

Overall speed up for increasing input size
WS 2014 – Algorithm Engineering 9(1) / 10



Gustafson’s Law (cont.)

0

2000

4000

6000

8000

10000

12000

14000

16000

0
200

0
400

0
600

0
800

0
100

00
120

00
140

00
160

00

ov
er
al
ls
pe
ed
up

p

x = 0.9
x = 0.8
x = 0.7
x = 0.6
x = 0.5

WS 2014 – Algorithm Engineering 10(2) / 10


	Theoretical Limits

