Programming with CUDA
and Parallel Algorithms

Waqar Saleem
Jens Müller
Recap

- Writing OpenCL programs
Today

• Analyzing parallel algorithms
• PRAM: EREW, CREW, ERCW, CRCW
• Definitions: cost, speed up, efficiency
• Amdahl’s law
• Brent’s theorem
• Project introductions
A Common Model for Parallel Computation

• Diverse parallel architectures exist
 • A common model will necessarily oversimplify

• Forcing any one model will cause giving up benefits of other models

• Analysis for one model might be completely invalid on another model
Parallel Random Access Machine (PRAM)

• A PRAM is a “shared memory abstract machine” (wikipedia)

• Synchronization and communication costs are not considered
PRAM Models

- Restrict memory access to resolve conflicts
- EREW - Exclusive Read Exclusive Write
- CREW - Concurrent Read Exclusive Write
- ERCW - Exclusive Read Concurrent Write
- CRCW - Concurrent Read Concurrent Write

- Concurrent writes can be
 - Common - All write the same value, otherwise illegal
 - Arbitrary - An arbitrary write succeeds, others fail
 - Priority - Writes are prioritized
 - Associative - All values to be written are reduced to a single value
PRAM Algorithms

- Potentially infinite processors
- Potentially infinite memory
- Random Access memory
- MIMD
 - processors are in lock-step synchronization: they execute instructions together
 - these instructions may vary per processor
- No resource contention, except memory
PRAM instruction

• PRAM instructions proceed in three steps
 • Read from shared memory
 • Compute in private memory
 • Store in shared memory
• Each instruction takes one time unit
• An algorithm’s run time is calculated in terms of the total number of steps or instructions
• Computed in terms of problem size, \(n \), and processor count, \(p \)
Example: Parallel Sum

- *REW*: A tree structure, leading to $\log n$ steps
- CRCW (associative): Single step (assuming reduction operator to be addition)
Definitions

- Run time of the parallel algorithm, T_p
- Run time of the best known sequential algorithm for the same problem, T_s or T_1
- Cost, C: product of processor count and parallel execution time, $p \times T_p$
- Speed up, S: ratio of sequential to parallel running time, T_1 / T_p
- Efficiency, E: ratio of speed up to number of processors, S / p
- A cost optimal algorithm is one whose cost is equal to the sequential running time, $C = T_1$
- Therefore, $S = p$ and $E = 1$
Cost optimality

• Sorting: $T_1 = O(n \log n)$

• Cost optimal parallel sorting algorithms
 • uses $O(n)$ processors for $O(\log n)$ steps each
 • uses $O(n / \log n)$ processors for $O(\log^2 n)$ time

• An algorithm using $O(n^2)$ processors for $O(1)$ time runs faster but is not cost optimal

• Cost optimal algorithms scale better to machines with fewer processors
Speed up

- $S = \frac{T_1}{T_p}$, cannot be more than p
- Linear/ideal speed up: $S = p$
- An algorithm with linear speed up will run k times as fast on k times as many processors
- Cost optimal algorithms have linear speedup
Amdahl's law

- Assume an algorithm with sequential running time of 1, i.e. $T_1 = 1$
- Assume that a fraction, P, of the algorithm can be parallelized using p processors
- Overall execution time = time for sequential portion + time for parallel portion = $(1 - P) + P/p$
- Therefore, overall speedup is $1 / ((1 - P) + P/p)$
Estimating P

- For observed speed up, $S’$ on $p’$ processors, the estimated value of P is
 \[
 \frac{1}{S’} - 1 \bigg) / \left(\frac{1}{p’} - 1 \right)
 \]

- Amdahl’s law assumes fixed problem size. P stays fixed irrespective of p
Diminishing gains

- Image from wikipedia page on Amdahl's law
Gustafson’s law

- Relaxes Amdahl’s law by allowing problem size to vary
- Assume an algorithm with a serial portion, $S(n)$, where n is the problem size
- Assume a total parallel running time of 1. So the parallelized portion takes time $1 - S(n)$
- Assuming p processors, the sequential running time is $S(n) + p(1 - S(n))$
- Speedup is $S(n) + p(1 - S(n))$
- Assuming $S(n)$ diminishing with n, speed up approaches p
Brent’s theorem

• Assume an algorithm taking t time steps to perform m operations

• Let s_i be the number of operations performed in time step i

 • $\sum_{i=1}^{t} s_i = m$

• With p processors, s_i can be done in time $\left\lceil \frac{s_i}{p} \right\rceil$

 • $\sum_{i=1}^{t} \left\lceil \frac{s_i}{p} \right\rceil \leq \sum_{i=1}^{t} (\frac{s_i}{p} + p - 1) / p = t + (m - t)/p$
Project Presentations

- 5 to 10 minutes each
 - Alexander Voigt - Compression
 - Thomas Rumpf - Game of Life
 - Philipp Lucas - EM Wave Propagation
 - T. Beier, M. Kaiser, L. Kuehne - Video Editing
 - Thomas Prinz - Virtual Machine
See you next time!